詳細介紹
詳細介紹
熱甩尾儀根據(jù)D"amour/Smith原理和方法測量大鼠、小鼠尾巴部受紅外熱刺激時的痛覺閾值。
實驗步驟及方法
· 該儀器使用可調(diào)強度的紅外光源紅外光通過一拋物鏡面反射聚焦在實驗動物的尾巴上;
· 操作人員將實驗動物置于儀器上把動物的尾巴放在紅外光源處接受熱輻射刺激;
· 當動物感覺到疼痛時尾巴會左右甩動或者輕敲臺面內(nèi)置傳感器會立刻檢測到尾巴的活動停止計時和關閉光源;
· 儀器自動記錄反應時間和光源強;
· 數(shù)據(jù)可通過U盤或USB數(shù)據(jù)線導出到電腦;
· 該型號的設備在世界上使用和驗證超過3000次積累了數(shù)十年的經(jīng)驗;
型號37560
主要特點
· 尾部輕拍可自動記錄或手動評分;
· 自動化程度高避免人為因素引起的誤差;
· 觸摸屏控制操控方便顯示直觀;
· 可獨立工作也可連接電腦使用;
· 測試平臺平整表面無突出和遮擋部件;
· 可選配紅外熱輻射校準儀用于校準紅外光源;
· 多種單位可轉換;
· 該儀器適合大鼠和小鼠的測試;
· 有大鼠、小鼠兩種不同的固定器可供選擇;
正在進行大鼠甩尾測試
儀器的操作
· 主機內(nèi)包括紅外光源、傳感器、微控制器;
· 自動檢測尾巴的活動情況自動計時延遲時間會被自動記錄;
· 可選配傾斜的老鼠固定器將老鼠尾巴保持在 45 度向上的位置。

可選配的小鼠固定器
控制面板
· 數(shù)據(jù)會存儲設備中可以通過USB接口直接導出到電腦;
· 基于CUB Windows®的軟件可實現(xiàn)數(shù)據(jù)的傳輸;
· 數(shù)據(jù)格式通用化可使用其他軟件進行統(tǒng)計;
· 帶儲存功能用于實驗數(shù)據(jù)的保存;
· 可聯(lián)網(wǎng)通過遠程網(wǎng)絡對實驗方案進行編輯;
校準輻射計
· 用來對輻射強度進行校準;校準輻射計貨號我37300;
· 確保兩個或多個裝置提供相同強度的熱傷害性刺激(輻射單位mW/cm2)
· 測量紅外光的能量的值(1s持續(xù)時間內(nèi)的1mW對應1mJ)
替換燈泡 (Halogen"Bellaphot",Mod.64607 OSRAM,8V-50W)
主要參數(shù) 電源 通用 85-264 VAC, 50-60Hz 控制 軟鍵和腳踏板 數(shù)據(jù)讀取 多功能的圖像顯示 打印 微型熱敏打印機(需另外購買) 紅外強度 01-99可調(diào) 反應時間 液晶屏顯示分辨率為0.1s 數(shù)據(jù)傳輸 USB接口 校準 紅外熱輻射計(需另外購買) 工作溫度 10-40°C 重量 4Kg 尺寸 43x22x10cm 標準配置 37360 甩尾儀主機 37215-303 腳踏板 E-AU 041 存儲卡包含以下 37370-302 安裝說明書 52050-10 數(shù)據(jù)采集軟件包 52010-323 USB 數(shù)據(jù)線 E-HR 002 E-US 063-1 電池 M4T32-BRI2SH1 額外選配 37360-325 小鼠束縛器 (25mm I.D.) 37360-330 小鼠束縛器(30mm I.D.) 37300 紅外熱輻射計 57145 微型打印機
參考文獻
1.Weldon C, Ji T, Nguyen MT, et al. Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia. ACS Nano. 2019;13(1):18-25. doi:10.1021/acsnano.8b05408(IF=17.1)
2.Guo W, Fan S, Xiao D, et al. A Brainstem reticulotegmental neural ensemble drives acoustic startle reflexes. Nat Commun. 2021;12(1):6403. Published 2021 Nov 4. doi:10.1038/s41467-021-26723-9(IF=16.6)
3.Guida F, Boccella S, Belardo C, et al. Altered gut microta and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain Behav Immun. 2020;85:128-141. doi:10.1016/j.bbi.2019.04.006(IF=15.1)
4.Huang F, Chen X, Jiang X, et al. Betaine ameliorates prenatal valproic-acid-induced autism-like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin Neurosci. 2019;73(6):317-322. doi:10.1111/pcn.12833(IF=11.9)
5.Liu Q, Su LY, Sun C, et al. Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation. Redox Biol. 2020;34:101560. doi:10.1016/j.redox.2020.101560(IF=11.4)
6.Caputi FF, Rullo L, Acquas E, Ciccocioppo R, Candeletti S, Romualdi P. Evidence of a PPARγ-mediated mechanism in the ability of Withania somnifera to attenuate tolerance to the antinociceptive effects of morphine. Pharmacol Res. 2019;139:422-430. doi:10.1016/j.phrs.2018.11.033(IF=9.3)
7.Stone AE, Scheuermann SE, Haile CN, et al. conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines. 2021;6(1):69. Published 2021 May 13. doi:10.1038/s41541-021-00329-0(IF=9.2)
8.Elhenawy AA, Al-Harbi LM, El-Gazzar MA, et al. Naproxenylamino acid derivativesDesign, synthesis, docking, QSAR and anti-inflammatory and analgesic activity. Biomed Pharmacother. 2019;116:109024. doi:10.1016/j.pha.2019.109024IF=7.5)
9.Hu ZJ, Han W, Cao CQ, Mao-Ying QL, Mi WL, Wang YQ. Peripheral Leptin Signaling Mediates Formalin-Induced Nociception. Neurosci Bull. 2018;34(2):321-329. doi:10.1007/s12264-017-0194-2(IF=5.6)
10.Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother. 2022;145:112395. doi:10.1016/j.pha.2021.112395(IF=7.5)
11.Marabese I, Boccella S, Iannotta M, et al. Metabotropic glutamate receptor subtype 7 in the dorsal striatum oppositely modulates pain in sham and neuropathic rats.Neuropharmacology. 2018;135:86-99. doi:10.1016/j.neuropharm.2018.03.003(IF=4.7)
12.Suzuki T, Sawada T, Kawai K, Ishihara Y. Pharmacological profile of TAN-452, a novel peripherally acting opioid receptor antagonist for the treatment of opioid-inducedbowel syndromes. Life Sci. 2018;215:246-252. doi:10.1016/j.lfs.2018.07.028(IF=6.1)
13.De Caro C, Raucci F, Saviano A, et al. Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomed Pharmacother. 2020;126:110042. doi:10.1016/j.pha.2020.110042(IF=7.5)
14.Palazzo E, Boccella S, Marabese I, et al. Homo-AMPA in the periaqueductal grey modulates pain and rostral ventromedial medulla activity in diabetic neuropathic mice. Neuropharmacology. 2022;212:109047. doi:10.1016/j.neuropharm.2022.109047(IF=4.7)
15.Weber L, Wang X, Ren R, et al. The Development of a Macromolecular Analgesic for Arthritic Pain. Mol Pharm. 2019;16(3):1234-1244. doi:10.1021/acs.molpharmaceut.8b01197(IF=4.9)
16.Sasaguri T, Taguchi T, Murata Y, et al. Interleukin-27 controls basal pain threshold in physiological and pathological conditions. Sci Rep. 2018;8(1):11022. Published 2018 Jul 23. doi:10.1038/s41598-018-29398-3(IF=4.6)
17.Komatsu A, Miyano K, Nakayama D, et al. Novel Opioid Analgesics for the Development of Transdermal Opioid Patches That Possess Morphine-Like Pharmacological Profiles Rather Than Possible Opioid Switching Alternatives Among Patch Formula. Anesth Analg. 2022;134(5):1082-1093. doi:10.1213/ANE.0000000000005954(IF=5.7)
18.Groemer TW, Triller A, Zeilhofer HU, Becker K, Eulenburg V, Becker CM. Nociception in the Glycine Receptor Deficient Mutant Mouse Spastic. Front Mol Neurosci. 2022;15:832490. Published 2022 Apr 25. doi:10.3389/fnmol.2022.832490(IF=4.8)
19.Poznański P, Lesniak A, Bujalska-Zadrozny M, Strzemecka J, Sacharczuk M. Bidirectional selection for high and low stress-induced analgesia affects G-protein activity. Neuropharmacology. 2019;144:37-42. doi:10.1016/j.neuropharm.2018.10.014(IF=4.7)
方法學文獻
F.E. D’mour & D.L. Smith"A Method for Determining Loss of Pain Sensation." J. Pharmacol. Exp. Therap. 7274-79, 1941.